Fast Classification with Binary Prototypes

نویسندگان

  • Kai Zhong
  • Ruiqi Guo
  • Sanjiv Kumar
  • Bowei Yan
  • David Simcha
  • Inderjit S. Dhillon
چکیده

In this work, we propose a new technique for fast k-nearest neighbor (k-NN) classification in which the original database is represented via a small set of learned binary prototypes. The training phase simultaneously learns a hash function which maps the data points to binary codes, and a set of representative binary prototypes. In the prediction phase, we first hash the query into a binary code and then do the k-NN classification using the binary prototypes as the database. Our approach speeds up k-NN classification in two aspects. First, we compress the database into a smaller set of prototypes such that k-NN search only goes through a smaller set rather than the whole dataset. Second, we reduce the original space to a compact binary embedding, where the Hamming distance between two binary codes is very efficient to compute. We propose a formulation to learn the hash function and prototypes such that the classification error is minimized. We also provide a novel theoretical analysis of the proposed technique in terms of Bayes error consistency. Empirically, our method is much faster than the state-of-the-art k-NN compression methods with comparable accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A prototype classification method and its use in a hybrid solution for multiclass pattern recognition

In order to combine a fast multiclass classification method with an effective binary classification method, we have developed a prototype learning/matching scheme that can be integrated with support vector machines (SVM) for vector-matching applications. This prototype classification method employs a learning process to determine both the number and the location of prototypes. The learning proc...

متن کامل

Creating Prototypes for Fast Classification in Dempster-Shafer Clustering

We develop a classification method for incoming pieces of evidence in Dempster-Shafer theory. This methodology is based on previous work with clustering and specification of originally nonspecific evidence. This methodology is here put in order for fast classification of future incoming pieces of evidence by comparing them with prototypes representing the clusters, instead of making a full clus...

متن کامل

Facial expression recognition based on Local Binary Patterns

Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...

متن کامل

Appearance Based Recognition of Complex Objects by Genetic Prototype-Learning

This paper describes a method to recognize and classify complex objects in digital images. To this end, a uniform representation of prototypes is introduced. The notion of a prototype describes a set of local features which allow to recognize objects by their appearance. During a training step a genetic algorithm is applied to the prototypes to optimize them with regard to the classification ta...

متن کامل

Advanced Prototype Machines: Exploring Prototypes for Classification

In this paper, we propose advanced prototype machines (APMs). APMs model classes as small sets of highly descriptive prototypes which are well suited for interactive visualization. Thus, APMs offer a method to analyze class models, feature spaces and particular classification scenarios. To derive the prototypes, we introduce ”Push and Grow”, a classification algorithm which is based on a qualit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017